
Available online at www.sciencedirect.com
Journal of Computational Physics 227 (2008) 4805–4824

www.elsevier.com/locate/jcp
A stable high-order finite difference scheme for the
compressible Navier–Stokes equations

No-slip wall boundary conditions
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Abstract

A stable wall boundary procedure is derived for the discretized compressible Navier–Stokes equations. The procedure
leads to an energy estimate for the linearized equations. We discretize the equations using high-order accurate finite dif-
ference summation-by-parts (SBP) operators. The boundary conditions are imposed weakly with penalty terms. We prove
linear stability for the scheme including the wall boundary conditions.

The penalty imposition of the boundary conditions is tested for the flow around a circular cylinder at Ma ¼ 0:1 and
Re ¼ 100. We demonstrate the robustness of the SBP-SAT technique by imposing incompatible initial data and show
the behavior of the boundary condition implementation. Using the errors at the wall we show that higher convergence
rates are obtained for the high-order schemes.

We compute the vortex shedding from a circular cylinder and obtain good agreement with previously published (com-
putational and experimental) results for lift, drag and the Strouhal number. We use our results to compare the computa-
tional time for a given for a accuracy and show the superior efficiency of the 5th-order scheme.
� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The no-slip wall boundary condition is numerically difficult to implement in a stable and accurate manner.
Moreover, one frequently has to face the difficulty with incompatible initial data. Realistic computations are
often initialized with constant free-stream values in the entire domain, which obviously does not satisfy a no-
slip boundary condition. This causes large oscillations and possible blow-ups. The problem can, to some
extent, be circumvented by constructing initial data that satisfy the boundary conditions, but that is a tedious
0021-9991/$ - see front matter � 2008 Elsevier Inc. All rights reserved.
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task. The aim of this article is to demonstrate a technique that easily handles the wall boundary conditions for
finite difference methods with orders ranging from 2 to 5.

We approach this problem by deriving a set of (well-known and) well-posed wall boundary conditions for
the continuous problem. The Navier–Stokes equations are discretized with high-order finite difference
schemes, satisfying a summation-by-parts (SBP) rule. The main contribution of this article is the weak imple-
mentation of the boundary conditions with a penalty technique known as simultaneous approximation term
(SAT). (For SBP-SAT theory see [9,10,22,2,3,14,15,11,12,23,13,20,21,19].) We prove the scheme stable,
including the wall boundary conditions, using the energy method.

In this article we focus on wall boundary conditions. We use the stable treatment of far-field boundaries
derived in [19], and in a future article we will discuss a grid–block interface treatment. We merely assume that
grid–block interfaces can be treated in a stable manner. With that assumption, the entire scheme is provably
stable. In [13], stable artificial dissipation operators were derived, compatible with the SBP-SAT schemes,
which are also used. No other features are necessary.
1.1. Advection–diffusion equation

To introduce the idea of the penalty imposition of wall boundary conditions, we will study the advection–
diffusion equation
ut þ aux ¼ �uxx; 0 6 x 6 1; t P 0;

uð0; tÞ ¼ 0; auð1; tÞ � 2�uxð1; tÞ ¼ 0; uðx; 0Þ ¼ f ðxÞ;
ð1Þ
where a; � > 0. The boundary at x ¼ 0 is a model of the wall (and the boundary x ¼ 1 mimics a far-field bound-
ary condition). Apply the energy method
1

2

Z 1

0

u2 dx
� �

t

þ au2

2
j10 ¼ �uuxj10 � �

Z 1

0

u2
x dx:
Using the boundary conditions yields
1

2

Z 1

0

u2 dx
� �

t

þ �
Z 1

0

u2
x dx ¼ 0:
Hence, kuk is bounded and (1) is well-posed.

1.2. Summation-by-parts

Discretize 0 6 x 6 1 using N þ 1 evenly distributed grid points with spacing h. Let vðtÞ ¼ ðv0ðtÞ; . . . ; vN ðtÞÞT
be a scalar grid function. Then the first derivative is approximated by, P�1Qv, where P is a positive definite
(symmetric) matrix. P is used to define a discrete an l2-equivalent norm, kvk2

P ¼ vTPv. In our particular
schemes P is diagonal, which is a necessary requirement for stability on curvilinear grids. (See [23].) Q

skew-symmetric except at the corners and Qþ QT ¼ diagð�1; 0; . . . ; 0; 1Þ ¼ B. Also, let
E0 ¼ diagð1; 0; . . . ; 0Þ and E1 ¼ diagð0; . . . ; 0; 1Þ.

1.3. Semidiscrete advection–diffusion equation

We discretize (1) as follows
vt þ aP�1Qv ¼ �P�1QP�1Qvþ rLE0P�1ðv� gLÞ þ rRE1P�1ðav� 2�P�1Qv� gRÞ;

where rL and rR are parameters to be determined with respect to stability. With gL ¼ gR ¼ 0, we apply the
energy method by multiplying by vTP and adding the result to its transpose
ðkvk2
P Þt þ avTBv ¼ 2�vTBP�1Qv� 2�ðP�1QvÞTPðP�1QvÞ þ 2rLvTE0vþ 2rRvTE1ðav� 2�P�1QvÞ: ð2Þ
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With rR ¼ 1=2, all boundary terms at x ¼ 1 cancel and the right boundary is stable. (See [19] for more details.)
We will use the short-hand notation vxi ¼ ðP�1QvÞi and assume that P is diagonal with the upper-left compo-
nent hp0. (Note that p0 > 0.) Then
ðkvk2
P Þt � av2

0 ¼ �2�v0vx0 � 2�vT
x Pvx þ 2rLv2

0: ð3Þ

The aim is to choose rL such that kvk becomes non-increasing. (kvk should not increase since the boundary
data is 0.) To achieve that, we would like to rewrite the boundary terms as a quadratic form. Since no bound-
ary term with v2

x0 appears explicitly, it seems to be an impossible task. However, we may use
vT
x Pvx ¼ v2

x0hp0 þ h
XN

i¼1

v2
xipi ¼ v2

x0hp0 þ kvxk2
P: ð4Þ
Then (3) becomes
ðkvk2
P Þt þ 2�kvxk2

P þ qTMq ¼ 0;
where qT ¼ ðv0; vx0Þ and
M ¼
�2rL � a �

� 2�hp0

� �
:

If M is positive semidefinite, the scheme is stable. Introduce, rL ¼ r1 þ �r2 and split M such that
M ¼ M1 þ �M2 ¼
�2r1 � a 0

0 0

� �
þ �

�2r2 1

1 2hp0

� �
:

M is positive semidefinite, if M1 and M2 are. M1 is positive semidefinite if r1 6 �a=2 and M2 if r2 6 � 1
4hp0

. The
same idea will be used for the Navier–Stokes equations, although the algebra will be more complicated.

2. The Navier–Stokes equations

For the benefit of the reader, we summarize the equations and notation introduced in [19], where more
details can be found. A bar denotes a dimensional variable, a � a nondimensional variable and 1 signifies
a free-stream value. We nondimensionalize the velocity components �u1; �u2; �u3 using the speed of sound �a1;
the density q� ¼ �q=�q1; the temperature T � ¼ T=T1; the pressure p� ¼ �p=ð�q1�a2

1Þ and the total energy
e� ¼ �e=ð�q1�a2

1Þ. k and l are the second and shear viscosity coefficients nondimensionalized by �l1. We assume
that 3kþ 2l P 0 (and in computations and use k ¼ �2l=3). q� denotes the heat flux and c is the ratio of the
specific heats. Further, Re ¼ u1q1L

l1
, Ma ¼ u1

a1
¼ u1, Pr ¼ l1cp

j1
, are the Reynolds number, Mach number and

Prandtl number, where u1 denotes the magnitude of the free-stream velocity. We introduce � ¼ Ma=Re and
present the governing equations in nondimensional form on a general domain.

Introduce the coordinate transformation x ¼ xðn; g; fÞ, y ¼ yðn; g; fÞ and z ¼ zðn; g; fÞ such that
0 6 n; g; f 6 1 (which is the computational domain D) and define the Jacobian matrix as
J ¼

ox
on

ox
og

ox
of

oy
on

oy
og

oy
of

oz
on

oz
og

oz
of

0BB@
1CCA:
Let detðJÞ ¼ J , then the Navier–Stokes equations can then be stated on conservative form as
ðJuÞt þ bF n þ bGg þ bH f ¼ 0; ð5Þ

where bF ¼ bF I � �bF V, bG ¼ bGI � �bGV, bH ¼ bH I � � bH V. Furthermore
bF I;V ¼ JðnxF

I;V þ nyG
I;V þ nzH

I;VÞ;bGI;V ¼ JðgxF
I;V þ gyG

I;V þ gzH
I;VÞ;bH I;V ¼ JðfxF

I;V þ fyG
I;V þ fzH

I;VÞ:
ð6Þ
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A superscript I denotes the inviscid part of the flux and V the viscous part. For a thorough derivation of the
transformed Navier–Stokes equations see [16,19].

To analyze these equations in terms of well-posedness we need a set of symmetric linear equations [7,4]. We
transform the Navier–Stokes equations to primitive variables v ¼ ðq�; u�1; u�2; u�3; p�Þ, linearize and freeze the
coefficients. A tilde sign will denote the time-dependent variable. Variables and matrices without the tilde
are their frozen equivalents.

Remark. Formally, we let q� ¼ qex þ ~q where qex is the exact (and assumed smooth) solution. We freeze qex,
denoted q. If we can show well-posedness (or stability in the discrete case) for all q in the range of qex the
nonlinear problem is well-posed (or stable). (See [7,4] and references therein.)

Next, we use the symmetrizing matrices (SP ; S
�1
p ), derived in [1], and apply the coordinate transformation

described above, to arrive at
ðJ ~wÞt þ ðbF wÞn þ ðbGwÞg þ ð bH wÞf ¼ 0; ð7Þ
where
bF I
w ¼ JðnxA1w þ nyA2w þ nzA3wÞu ¼ bA1w ~w;bGI
w ¼ JðgxA1w þ gyA2w þ gzA3wÞu ¼ bA2w ~w;bH I
w ¼ JðfxA1w þ fyA2w þ fzA3wÞu ¼ bA3w ~w
and
 bF V
w ¼ ðbB11unÞ þ ðbB12ugÞ þ ðbB13ufÞ;bGV
w ¼ ðbB21unÞ þ ðbB22ugÞ þ ðbB33ufÞ;bH V
w ¼ ðbB31unÞ þ ðbB32ugÞ þ ðbB33ufÞ;

ð8Þ
where bBij includes the coordinate transformations and their exact forms can be found in [16].
Throughout this paper, u will denote the conservative variables; v the primitive; ~w the symmetrized (after

linearization) and ~c the characteristic (also after linearization). Using the linearized equation of state, ~w can be
cast as
~w ¼ affiffiffi
c
p

q
~q; ~u1; ~u2; ~u3;

1ffiffiffi
c
p ffiffiffiffiffiffiffiffiffiffiffi

c� 1
p

a
eT !

: ð9Þ
2.1. Well-posedness

Next, we turn to well-posedness of Eq. (7). Apply the energy method to (7)
0 ¼
Z

D
~wT ~wtJ dndgdfþ

Z
D

~wTððbF I
wÞn þ ðbGI

wÞg þ ð bH I
wÞfÞdndgdf� �

Z
D

~wTððbF V
wÞn þ ðbGV

wÞg

þ ð bH V
wÞfÞdndgdf: ð10Þ
Integrating (10) by parts leads to
2

Z
D

~wT ~wtJ dndgdfþ 2�DI ¼
Z

n¼0

~wTðbA1w ~w� 2�bF V
wÞdgdfþ

Z
n¼1

~wTð�bA1w ~wþ 2�bF V
wÞdgdf

þ
Z

g¼0

~wTðbA2w ~w� 2�bGV
wÞdndfþ

Z
g¼1

~wTð�bA2w ~wþ 2�bGV
wÞdndf

þ
Z

f¼0

~wTðbA3w ~w� 2� bH V
wÞdndgþ

Z
f¼1

~wTð�bA3w ~wþ 2� bH V
wÞdndg; ð11Þ
where DI is a positive quadratic term in the derivatives of ~w (see [16]).



M. Svärd, J. Nordström / Journal of Computational Physics 227 (2008) 4805–4824 4809
2.2. Wall boundary conditions

In order to simplify the notation, we will study the case of a wall at n ¼ 0 and assume that all other bound-
ary terms are well-posed and omit (without restriction) their contributions. Then Eq. (11) reduces to
2

Z
D

~wT ~wtJdndgdfþ 2�DI ¼
Z

n¼0

~wTðbA1w ~w� 2�bF V
wÞdgdf: ð12Þ
The right-hand side of (12) will be supplied with boundary conditions in order to bound the solution. In the
case of a wall, maximally four boundary conditions may be imposed (see for example [7]). The so called no-slip
boundary conditions are u1 ¼ u2 ¼ u3 ¼ 0. The fourth condition is usually the temperature T ¼ g1, or the wall-
normal temperature gradient, oT

on ¼ g2, where g1 and g2 are known and bounded functions. We will now show
that these two cases are well-posed. Carrying out the coordinate transformations we obtain
bA1w ¼ Jnx

u1 b 0 0 0

u1 0 0 d

0 0 u1 0 0

0 0 0 u1 0

0 d 0 0 u1

0BBBBBB@

1CCCCCCAþ Jny

u2 0 b 0 0

0 u2 0 0 0

b 0 u2 0 d

0 0 0 u2 0

0 0 d 0 u2

0BBBBBB@

1CCCCCCAþ Jnz

u3 0 0 b 0

0 u3 0 0 0

0 0 u3 0 0

b 0 0 u3 d

0 0 0 d u3

0BBBBBB@

1CCCCCCA;
where b ¼ a=
ffiffiffi
c
p

and d ¼
ffiffiffiffiffiffi
c�1
p

c . Insert the boundary conditions u1 ¼ u2 ¼ u3 ¼ 0 to obtain
bA1w ¼ J

0 nxb nyb nzb 0

nxb 0 0 0 nxd

nyb 0 0 0 nyd

nzb 0 0 0 nzd

0 nxd nyd nzd 0

0BBBBBB@

1CCCCCCA:
Inserting ~u1 ¼ ~u2 ¼ ~u3 ¼ 0 in (9), we obtain ~wTA1 ~w ¼ 0.
Turning to the viscous terms, we study the Cartesian case and the boundary at x ¼ 0 to avoid cumbersome

notation. Since the first component of the viscous flux is 0 (even in the symmetrized variables), the viscous
terms (in the Cartesian case) reduce to,
�2�~wTbF V ¼ �2�
cl
Prq

1ffiffiffi
c
p ffiffiffiffiffiffiffiffiffiffiffi

c� 1
p

a

 !2eT eT x:
Obviously eT ¼ 0 bounds the solution, and so does eT x ¼ 0. The condition eT x ¼ 0 corresponds to specifying the

normal derivative, oeT
on ¼ ðnx

eT n þ gx
eT g þ fx

eT fÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ g2
x þ f2

x

q
¼ 0, which leads to well-posedness in the general

case. We summarize the results in the the following proposition.

Proposition 2.1. Eq. (7) with ui ¼ ~ui ¼ 0 and, T ¼ g1ðtÞ; eT ¼ 0 or oT
on ¼ g2;

oeT
on ¼ 0 is well posed.

Remark. We do not claim Proposition 2.1 to be a new result but include it for completeness of this exposition.

Remark. Above, we have used the linearized version of the boundary conditions. Formally this is justified by
the following argument. The no-slip boundary condition is u�i ¼ 0, i ¼ 1; 2; 3 or u�i ¼ ui;ex þ ~ui ¼ 0. In this case
the exact solution is constant on the boundary and ui;ex ¼ ui ¼ 0. Hence, ~ui ¼ 0 as well. A similar argument
holds for the temperature.
2.3. Discretization

The SBP-SAT method has successfully been used to prove energy-stable discretizations of far-field bound-
ary conditions in [14] and recently in [19] generalized to the three-dimensional equations. The definition of
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SBP operators was introduced in Section 1.2 and a compact tensor notation that simplifies the description of
the discrete Navier–Stokes equations was introduced in [19]. We will briefly explain the notation.

Let the discrete solution field be uijkl where the indices represent n; g and f positions and variable. The three
first are spatial indices ranging between, 0 � � � nn, 0 � � � ng and 0 � � � nf. The last index ranges between 1 and 5 and
represents the five different variables. Order a vector u ¼ ðu0001; u1001; . . . ; unn;ng;nf;5ÞT. We introduce tensor oper-
ators based on the following generic rule (stated for the arbitrary 1-D operators On;g;f)
On ¼ ðIf � Ig � On � I5Þ; Og ¼ ðIf � Og � In � I5Þ;
Of ¼ ðOf � Ig � In � I5Þ;
where I5 denotes a 5� 5-identity matrix and � is the Kronecker product. Further
Png ¼ PnPg; Pgf ¼ PgPf;

Pnf ¼ PnPf; P ¼ PnPgPf
and E0n ¼ ðIf � Ig � E0 � I5Þ and E1n;E0;g, etc., are defined similarly. We define the norm uTPu ¼ kuk2. Final-
ly, we will need bAiw ¼ ðIf � Ig � In � AiwÞ.

2.4. Stability of the Navier–Stokes equations

With the same ordering as uðtÞ, we define the contravariant inviscid fluxes vectors, bFI; bGI; bHI and the vis-
cous flux vectors bFV; bGV; bHV with components F I;ijkl, etc. Finally, ðJuÞijkl ¼ Jðnj; gk; flÞuijkl. Note that J is posi-
tive for all j; k; l, since we require a coordinate transformation to be non-singular everywhere (i.e. no cell
collapses to 0 volume). We use the convention that a colon instead of an index means the vector formed
by that index. For instance, uijk: ¼ ðuijk1; . . . ; uijk5Þ.

Without introducing the penalty terms for the boundary conditions yet, the non-linear Navier–Stokes equa-
tions are discretized as
ðJuÞt þDnðbFI � �bFVÞ þDgðbGI � �bGVÞ þDfð bHI � � bHVÞ ¼ 0: ð13Þ

As in the continuous case we transform to primitive variables, freeze the coefficients and apply the symmetriz-
ing matrices to obtain
ðJwÞt þDnðbFI
w � �bFV

wÞ þDgðbGI
w � �bGV

wÞ þDfð bHI
w � � bHV

wÞ ¼ 0; ð14Þ

where the viscous fluxes the discrete equivalents to (8). The derivatives appearing in the viscous fluxes are com-
puted with Dn, Dg and Df. We now apply the energy method to (14) and obtain
k
ffiffiffi
J
p

wk2

t þ wTBnPgfðbA1ww� 2�bFV
wÞ þ wTBgPnfðbA2ww� 2�bGV

wÞ þ wTBfPngðbA3ww� 2� bHV
wÞ þ 2�DI ¼ 0:

ð15Þ

(See [19] for more details.) DI denotes a positive quadratic term in the first-derivative difference approxima-
tions of the solution as in (11)
DI ¼ ðDnwÞTPbFV
w þ ðDgwÞTPbGV

w þ ðDfwÞwTP bHV
w

� �
¼

Dnw

Dgw

Dfw

0B@
1CA

TeP � bB11
bB12

bB13bB21
bB22

bB23bB31
bB32

bB33

0B@
1CA Dnw

Dgw

Dfw

0B@
1CA;
ð16Þ
where we have used the block-diagonal matrix eP ¼ diagðP;P;PÞ and
bBij ¼ If � Ig � In �
bB11

bB12
bB13bB21

bB22
bB23bB31

bB32
bB33

0B@
1CA: ð17Þ
Hence, positive semidefiniteness of DI follows directly from the positivity of ½bBij�.
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Eq. (15) corresponds exactly to (11). Bn;g;f picks the boundary terms in the respective directions. To keep the
algebra to a minimum we focus on n ¼ 0 and assume that all other boundary terms are 0 (i.e we assume that
they are stable).
k
ffiffiffi
J
p

wk2

t � wTE0nPgfðbA1ww� 2�FV
wÞ þ 2�DI ¼ 0: ð18Þ
Since bA1w is symmetric there is an orthonormal matrix X such that bA1wX ¼ X bK1 where
K1 ¼ diagðun; un; un; un þ c; un � cÞ and un is the component of the velocity normal to the boundary. Moreover,
we note that X TX ¼ I .

2.5. Discrete wall boundary condition

Based on the one-dimensional analysis of the advection–diffusion equation, we construct two terms that are
0 to truncation error that we add to the right-hand side of (14).
penalty ¼ rI1ðP�1
n E0n

bA01wðw� gI1
w ÞÞ þ �rI2ðP�1

n E0n
bIðw� gI2

w ÞÞ: ð19Þ
Carrying the terms through the derivation they would appear on the right-hand side of (18) as
2rI1ðwTE0nPgf
bA 01ðw� gI1

w ÞÞ þ 2�rI2ðwTE0nPgf
bIðw� gI2

w ÞÞ: ð20Þ

where bI ¼ ðI f � Ig � In � I5Þ. Note that, this particular splitting has a rationale from the equation point of
view as well. The first term in (19) or (20) is the penalty term that would be used if � ¼ 0 and the Euler equa-
tions were considered. The second term is the term that appears due to the viscosity in the equations. Based on
this observation we will construct gI1;2

w differently.
To construct the data vectors, we first note that for simple implementation gI1;2

w need to have a value at
every position. Hence, we copy w into gI1;2

w , which results in no boundary condition at all since the penalty
terms vanish entirely. Then, we substitute into gI1;2

w the correct boundary conditions. Hence, w� gI1;2
w will

enforce the boundary conditions we wish. At the ðk; lÞ boundary point at n ¼ 0 we have that
w0kl: ¼ affiffiffi
c
p

q
q0kl; u0kl

1 ; u0kl
2 ; u0kl

3 ;
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cðc� 1Þ
p

a
T 0kl

 !T

ð21Þ
and we construct gI2 substituting the boundary conditions into (21) to obtain
ðgI2
w Þ

0kl: ¼ affiffiffi
c
p

q
q0kl; 0; 0; 0; 0

� �T

:

This means that there are four boundary conditions just as required at a wall. On the other hand, we construct
gI1 by subtracting the normal component ðu1; u2; u3Þ � ðn1; n2; n3Þ, from w. This condition is the wall boundary
condition for the Euler equations. Setting the wall normal component to 0 is a subcondition of the no-slip
condition and we have not overspecified the system. We could just as well have put gI1 to equal gI2 but we
want to ensure that the solution converges to the Euler solution if the viscosity vanishes.

We add the penalty terms (20) to the right-hand side of (18),
k
ffiffiffi
J
p

wk2
t � wTE0nPgfðbA1ww� 2�FV

wÞ þ 2�DI ¼ 2rI1ðwTE0nPgf
bA01ðw� gI1ÞÞ þ 2�rI2ðwTE0nPgf

bIðw� gI2ÞÞ:

Or, by introducing, ðw1Þijk: ¼ ð~wÞijk: � ðgI1

w Þ
ijk: and ðw2Þijk: ¼ ð~wÞijk: � ðgI2

w Þ
ijk:, and noting that the first compo-

nent of ðw1;2Þijk: is zero,
k
ffiffiffi
J
p

wk2

t � wTE0nPgfðbA1wwþ 2rI1 bA 01ww1Þ þ 2�wTE0nPgfF
V
w � 2�rI2ðwTE0n

bIw2Þ þ 2�DI ¼ 0:
The following lemma holds.

Lemma 2.2. Let bA1w ¼ X TK1X where K1 ¼ diagðun; un; un; un þ a; un � aÞ and un ¼ ðnxu1; nyu2; nzu3Þ=
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

x þ n2
y þ n2

z

q
Þ is the velocity component normal to the boundary and assume that un ¼ 0. Then,

wTE0nPgfðbA1wwþ 2rI1 bA01ww1Þ > 0 if
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1. rI1 ¼ �2
2. bA 01w ¼ ðIf � Ig � In � X TK01X Þ
3. K01 ¼ Kþ ¼ diagð0; 0; 0; a; 0Þ.

Remark. Note that the Lemma 2.2 alone describes a stable penalty treatment of the no-penetration wall
boundary condition for the Euler equations.

Proof. We require that
�wTE0nPgfðbA1wwþ 2rI1 bA01ww1Þ ð22Þ

is non-negative for stability. We make the transformation to characteristic variables using
XT ¼ ðI f � Ig � In � X TÞ where X TbA1wX ¼ K1 ¼ diagðun; un; un; un þ a; un � aÞ and un is the normal component
of the velocity. That is
�wTXXTE0nPgfðbA1wwþ 2rI1 bA 01wXXTw1Þ ¼ �cTE0nPgfðbK1cþ 2rI1 bK01c1Þ; ð23Þ

where c1 ¼ ðXTw� XTgI1

w Þ ¼ c� gC1. Since bA1w is a linear combination of A1;A2 and A3 it suffices to consider
the Cartesian case where bA1w ¼ A1, which simplifies the notation. In that case
X ¼

0 0 �
ffiffiffiffiffiffi
c�1
c

q
1ffiffiffi
2c
p 1ffiffiffi

2c
p

0 0 0 1ffiffiffi
2c
p � 1ffiffiffi

2c
p

1 0 0 0 0

0 1 0 0 0

0 0 1ffiffi
c
p

ffiffiffiffiffiffi
c�1
2c

q ffiffiffiffiffiffi
c�1
2c

q

0BBBBBBBBB@

1CCCCCCCCCA
: ð24Þ
Let ckl ¼ ðc0kl1; . . . ; c0kl5ÞT, i.e., the vector of the variables at the ðk; lÞth boundary point at x ¼ 0. Also, let
ðw1Þkl be defined in a same way. We rewrite (23) on component form
X

kl

�cklP j
gP k

fðK1cklÞ þ 2rI1K01ðckl � ðgC1ÞklÞ: ð25Þ
Now (25) must be non-negative. That can only be satisfied if each term in the sum is non-negative and we
continue to study the point k; l and drop the indices to simplify the notation. The variables are
c ¼

~u3

~u4

�
ffiffiffiffiffiffi
c�1
c

q
affiffi
c
p

q ~qþ 1

c
ffiffiffiffiffiffi
c�1
p

a
eT

a

qc
ffiffiffiffiffiffiffiffiffi
2ðc�1
p

Þ
~qþ 1ffiffi

2
p ~u1 þ 1ffiffi

2
p

ca
eT

a

qc
ffiffiffiffiffiffiffiffiffi
2ðc�1
p

Þ
~q� 1ffiffi

2
p ~u1 þ 1ffiffi

2
p

ca
eT

0BBBBBBBBB@

1CCCCCCCCCA
: ð26Þ
We want to ensure that the solution converges to the Euler equations when Re!1 and therefore we will only
use the subcondition u � n ¼ 0. At x ¼ 0 the boundary condition is ~u1 ¼ u1 ¼ 0. Hence, K1 ¼
diagð0; 0; 0; a;�aÞ.

Next, we turn to the construction of gC1. Inserting the condition ~u1 ¼ 0 in (26) gives us
gC1 ¼

~u3

~u4

�
ffiffiffiffiffiffi
c�1
c

q
affiffi
c
p

q ~qþ 1

c
ffiffiffiffiffiffi
c�1
p

a
eT

a

qc
ffiffiffiffiffiffiffiffiffi
2ðc�1
p

Þ
~qþ 1ffiffi

2
p

ca
eT

a

qc
ffiffiffiffiffiffiffiffiffi
2ðc�1
p

Þ
~qþ 1ffiffi

2
p

ca
eT

0BBBBBBBBB@

1CCCCCCCCCA
: ð27Þ
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(This choice of gC1 implies that ðc� gC1Þ ¼ ð0; 0; 0; ~u1;�~u1Þ=
ffiffiffi
2
p

ensuring that the correct boundary condition
is enforced irrespective of the choice of K0.) To prove boundedness we will make use of the observation that
gC1 ¼ ð~c1;~c2;~c3; ðc4 þ c5Þ=2; ðc4 þ c5Þ=2ÞT: ð28Þ

Up until now, we have made sure that only the Euler subset of the no-slip boundary condition is used to
bound the inviscid boundary terms.

Next, we will turn to the choice of K0 and we will restrict ourselves to a specific form. The purpose is to
make the wall boundary procedure similar to the far-field boundary procedure. For the far-field boundary
conditions we penalize the ingoing characteristics and the viscous flux (see [19]). From a programming point of
view it would be very convenient if it was possible to have the same treatment of the inviscid portion of the
wall boundary conditions (i.e., we would be able to use the same routine and minimize the complexity in the
program as well as runtime). Hence, we will try the following ansatz, K0 ¼ Kþ ¼ diagð0; 0; 0; a; 0Þ, which gives
us a penalty term for the ingoing characteristic variable only. We rewrite (25) as
�~cTK1~cþ 2rI1~cTKð~c� gC1Þ ¼ �c2
4aþ c2

5a� 2r1c4aðc4 � gI1
4 Þ ¼ að�c2

4 þ c2
5Þ � r1c4ðc4 � c5Þ > 0;
where ðgC1Þ4 ¼ ðc4 þ c5Þ=2 was used in the last step. Choosing r1 ¼ �2 leads to
aðc4 � c5Þ2 > 0: �
Using Lemma 2.2 we are left with,
k
ffiffiffi
J
p

wk2
t þ 2�wTE0nPgfF

V
w � 2�rI2ðwTE0n

bIðw� gI2ÞÞ þ 2�DI 6 0: ð29Þ

Just as for the advection–diffusion equation, we need to borrow from DI to obtain a quadratic form in bound-
ary terms. In complete analogy with (4) we write,
DI ¼ eP � ½bBij� ¼
XN

i¼0

pni
eP0gf � ½bBij� ¼ pn0

eP0gf � ½bBij� þ eDI; ð30Þ
where pni are the non-zero elements of the diagonal matrix P n and eP 0gf ¼ diagðPgf;Pgf;PgfÞ. Next, we estimate
(29) as
k
ffiffiffi
J
p

wk2
t þ �qTePgf �

�2rI2bI bB11
bB12

bB13bB11 2pn0
bB11 2pn0

bB12 2pn0
bB13bB12 2pn0

bB12 2pn0
bB22 2pn0

bB23bB13 2pn0
bB13 2pn0

bB32 2pn0
bB33

0BBBBB@

1CCCCCAq0 6 0 ð31Þ
by throwing away 2�~DI . In (31) we have introduced ePgf ¼ diagðPgf;Pgf;Pgf;PgfÞ and
qT ¼ ððw0nÞT; ðDnwÞT0n; ðDgwÞT0n; ðDfwÞT0nÞ;
ðq0ÞT ¼ ððw2ÞT0n; ðDnwÞT0n; ðDgwÞT0n; ðDfwÞT0nÞ:
Note that, pn0 is of order OðDnÞ. Stability is achieved if the matrix in (31) is positive definite. The following
theorem is the main theoretical result of this article.

Theorem 2.3. The scheme is stable if Lemma 2.2 holds and
rI2
6 � 1

4pn0

max
cl
Prq

;
5l
3q

� �
:

Proof. In Eq. (31) the following expression needs to be positive
qTePgf �Mq0: ð32Þ

Note that, M ¼ If � Ig � In �M , where
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M ¼

�2rI2bI 5
bB11

bB12
bB13bB11 2pn0

bB11 2pn0
bB12 2pn0

bB13bB12 2pn0
bB12 2pn0

bB22 2pn0
bB23bB13 2pn0

bB13 2pn0
bB32 2pn0

bB33

0BBBB@
1CCCCA ð33Þ
is a 20� 20 matrix. It is only the q-components ðq0Þ0::1 that differs from q. All other components are equal in q

and q0. Moreover, the rows/columns of M corresponding to the q-components are all 0 (since the first com-
ponent of the viscous flux is 0) and does not affect the positivity of (32). Hence, we may instead of (32)
consider
qTePgf �Mq: ð34Þ

For stability we have to determine rI2 (below denoted r) such that M is positive semidefinite. Again, we will
restrict ourselves to the Cartesian case and the boundary at x ¼ 0 to simplify the notation. (We denote
pn0 ¼ p0.) It turns out that it is difficult to derive sharp estimates on r using the form (34). Instead, we expand
the problem to
eM ¼ �2rI15
bBbB 2p0
bB

 !
; ð35Þ
where bB ¼ ½bBij� and I15 is the 15� 15 identity matrix. If eM is positive semidefinite then all its principal sub-
matrices are (see [5]). One of the submatrices is M. Letting v be an arbitrary vector we may rotate eM with a
non-singular matrix R.
vTRT ;�1RT eM RR�1v: ð36Þ
Denote w ¼ R�1v and bM ¼ RT eM R. The task is now to choose r such that bM is positive semi-definite. We make
the particular choice
R ¼
I15 a

0 I15

� �
; a ¼ 1

2r
bB
and require that r 6¼ 0. Then
bM ¼ �2rI15 0

0 1
2r
bB2 þ 2p0

bB
� �

:

Obviously, r must be negative and since B is symmetric and positive semidefinite the condition is now
1

2r
bB þ 2p0I15 P 0:
Again, using the symmetry of bB we have bB ¼ X TK
bBX where X TX ¼ I15. Hence, by noting that
1

2r
bB þ 2p0I15 ¼ X T � 1

2r
K
bB þ 2p0I15

� �
X ;
we require that 1
2r k
bB
i þ 2p0 P 0, which implies that
r 6 � 1

4p0

k
bB
i ; i ¼ 1; . . . ; 15: ð37Þ
The remaining task is to determine the eigenvalues of bB. We begin with a few observations. Row/column 1, 6,
11 of the matrix bB have no non-zero entries (since the first components of the viscous fluxes are 0) and cor-
respond to three eigenvalues equal to 0. Row/column 5, 10, 15 have only the diagonal entry non-zero and
equal to ðPrqÞ=ðclÞ, which is the value of three more eigenvalues. The remaining 9� 9 matrix (using
k ¼ �2l=3) is
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l
q

4
3

0 0 0 1
6

0 0 0 1
6

0 1 0 1
6

0 0 0 0 0

0 0 1 0 0 0 1
6

0 0

0 1
6

0 1 0 0 0 0 0
1
6

0 0 0 4
3

0 0 0 1
6

0 0 0 0 0 1 0 1
6

0

0 0 1
6

0 0 0 1 0 0

0 0 0 0 0 1
6

0 1 0
1
6

0 0 0 1
6

0 0 0 4
3

0BBBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCCA
:

The eigenvalues of bB are: l
q f5

3
; 5

6
; 5

6
; 7

6
; 7

6
; 7

6
; 7

6
; 7

6
; 0; 0; 0; c

Pr ;
c
Pr ;

c
Prg. Taking the maximum of the eigenvalues in the

condition (37) proves the theorem. h

Remark. Note that the extension of M to eM makes the proof valid for a y or z boundary as well, since their
stability would be determined by two other submatrices of eM .

We close this section with a few comments on the implementation and interpretation of the present scheme.
The symmetric form of the linearized equations serves as an analytical tool to derive well-posed boundary con-
ditions. In a program it is more convenient to transform the boundary terms to the characteristic form directly
from the conservative formulation and compute all the penalty terms that act on the variables (and not the
viscous fluxes). The form of the first penalty term bounding the inviscid flux was derived in characteristic space
and that can be directly applied. (The same is true for a far-field boundary and the same routine can be used as
mentioned earlier. See for example [17] for transformation matrices.) In the case of a wall the extra penalty
term can also be computed in characteristic space by observing that there is an orthonormal transformation
from symmetric variables to characteristic variables. The penalty term in (29) stated in symmetric variables

can be rewritten as �2�rI2ðwTE0n
bIðw� gI2ÞÞ ¼ 2�rI2ðcTE0n

bIðc� gC2ÞÞ where gC2 is the transformed data vec-
tor. Hence, the penalty matrix will appear as an identity matrix in characteristic space as well. This makes
it easy to treat the entire wall boundary condition and the inviscid part of the far-field boundary condition
in characteristic space and use the same routine.

Finally, there are many different choices when constructing bA01 all valid from the linear analysis. We may
construct the matrix using uboundary or gI1 or any average of the two. We choose bA01 to be the ingoing portion of
the Roe-averaged bA1, i.e. bF IðuboundaryÞ � bF IðgiÞ ¼ bA1ðuboundary; gIÞðuboundary � gIÞ (see [18]), which may be
advantageous in an extension to allow non-smooth solutions. In Appendix A there is a flow chart explaining
step-by-step how to proceed when implementing this scheme.
3. Computation of cylinder in free stream

In [21] an analytical viscous shock solution was computed on a two-block grid using this technique. It was
shown that the theoretical convergence rates were obtained for the different orders of accuracy available. We
conclude without restating those results that the numerical procedure, as well as the current implementation,
has a verifiable order of accuracy.

3.1. Effect of wall penalty

The weak enforcement of the boundary conditions using penalty terms does not force the numerical solu-
tion to exactly fulfill the boundary conditions. Instead the effect can be described as a rubber-band pulling the
solution towards the boundary condition.

To demonstrate the rubber-band effect of the wall penalty terms, we show a sequence of vector plots of the
velocities near the wall at the upper-left part of the cylinder, see Figs. 1 and 2. The governing flow parameters
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Fig. 1. Vector plots of the u and v velocities computed with a 3rd-order scheme.
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are Ma ¼ 0:1 and Re ¼ 100. (This is the flow case used in all the computations below.) The initial condition is a
constant free stream in the entire domain, which does not satisfy the no-slip boundary condition. The velocity
vectors are oscillating with decreasing amplitude around the slip condition and at the same time decreasing
their lengths to satisfy the no-slip condition. The effect clearly relates to the two penalty terms used to enforce
the full wall boundary condition. Already at 30 time steps the arrows are so short that they are hardly visible.

The penalty procedure is the main reason for the robustness. The numerical solution remains smooth and
no high-frequency oscillations are triggered despite incompatible data.

In contrast to the penalty technique, we also enforced the boundary conditions at the wall in a more stan-
dard way. We updated the solution in the entire domain omitting the penalty terms at the wall and after each
stage in the Runge–Kutta scheme we overwrote the solution at the wall using the exact boundary values. We
initiated the cylinder computation with a homogeneous free-stream (as above) and kept everything else the
same. With that setup, all schemes became unstable. However, the commonly used second-order scheme could
be stabilized with an order of magnitude increase of the artificial diffusion. Obviously, that approach also
decreases the accuracy of the solution. The high-order schemes were impossible to stabilize with extra
diffusion.

3.2. Accuracy

It may be argued that one should exactly enforce the wall boundary conditions since we have known data at
hand. But by doing so (and for the moment disregarding the crucial stability issue), errors may increase
elsewhere. Typically at locations where the exact solution is not known and hence the error is impossible
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Fig. 2. Vector plots of the u and v velocities computed with a 3rd-order scheme. The last plot corresponds to T � 0:31.
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to measure. The weak imposition clearly shows the errors at the boundary and serves as a rough measure of
the error of the entire solution.

We compute on the full grid (fine) and on every other grid point in both directions (medium) and on every
fourth (coarse). We measure the maximum error in u and v on the upper wall of the cylinder at T ¼ 1:0. The
convergence rates of u and v, denoted qu and qv, are computed for four different orders of accuracy (2, 3, 4, 5).
The results are seen in Tables 1 and 2. We emphasize a few observations. Firstly, in all cases but one (the v

velocity for 4th- and 5th-order schemes on the medium grid) an increase in formal order results in increased
accuracy on all grids. Even on the coarse grid. Secondly, the general trend is that higher theoretical order of
accuracy yields a higher convergence rate in the computations. There are exceptions here too, but we point out
that convergence rates on model problems are usually shown on much finer grids than the fine grid in this test
case and one should not expect these results to be on the asymptotic slope yet. Nevertheless, even on these
more realistic CFD grids, the convergence rates are not too far off from their theoretical values between
the medium and fine grid.

It is sometimes argued that a low-order method should perform better on coarse grids. The idea is that h4

quickly becomes larger than h2 if h increases. This is clearly not the case in our experiments.
Table 1
Maximum errors on the wall and convergence rates in u at T ¼ 1, for Re ¼ 100 and Ma ¼ 0:1 and different orders of accuracy

eu order 2 qu 3 qu 4 qu 5 qu

Coarse 0.145 – 9.93e�2 – 6.70e�2 – 3.88e�2 –
Medium 4.61e�2 1.7 1.04e�2 3.2 9.54e�3 2.8 8.66e�3 2.2
Fine 6.41e�3 2.8 1.33e�3 3.0 4.41e�4 4.4 1.72e�4 5.7



Table 2
Maximum errors on the wall and convergence rates in v at T ¼ 1, for Re ¼ 50 and Ma ¼ 0:5 and different orders of accuracy

ev order 2 qv 3 qv 4 qv 5 qv

Coarse 0.114 – 7.50e�2 – 4.24e�2 – 2.49e�2 –
Medium 3.31e�2 1.8 1.42e�2 2.4 5.74e�3 2.9 8.12e�3 1.6
Fine 5.31e�3 2.6 1.13e�3 3.7 4.08e�4 3.8 1.96e�4 5.4
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A heuristic explanation why the high-order methods are more accurate on coarse grids would be that a
high-order method will resolve high-frequency oscillations better than a low-order scheme. In this case the
high-frequency contents of the solution describes a sharp gradient (the boundary layer). The pull towards 0
subject to the penalty is the same for all orders, but the pull away from 0 is less for a high-order method
because it captures the gradient more accurately on any grid. Hence, a better accuracy at the boundary points
for higher-order. This argument also explains our claim that the errors at the boundary points reflect the over-
all error of the solution.

The reverse order argument discussed above fails since the order of accuracy is the limiting slope as h! 0.
When following the error backwards to coarser grids one will at some point pass a kink and start following a
slope of lower order. This implies that the high-order scheme is in general more accurate even on underre-
solved grids.

3.3. Vortex shedding in free stream

As a next test case, we will calculate the flow around a circular cylinder. Again, with the free-stream Mach
number 0.1 and the Reynolds number based on the diameter of the cylinder set to 100. This case has been
thoroughly studied and both experimental data and computational results are available in the literature.
We excite the shedding by inserting a vortex in front of the cylinder. We run until T ¼ 1000 where we have
a steady shedding going and measure flow characteristics between T ¼ 1000� 1500.

We measure the following quantities: The Strouhal number, St ¼ fL
V where f is the frequency of the vortex

shedding. L is the characteristic length (in this case the diameter of the cylinder, which is 1) V is the free-stream
velocity of the fluid and is 0.1 in this case. Further, we will compute the pressure lift, pressure drag, viscous lift
and viscous drag coefficients. (We compute the forces as approximate line integrals and non-dimensionalize by
the dynamic pressure times the diameter, D, of the cylinder: 1

2
q1V 2D.) The sum of the viscous and pressure

lift/drag becomes the lift/drag coefficients. All coefficients will be presented with its maximal, minimal value
as well as its average value taken over all measure points (except St which is a frequency).

Two different base grids will be used. Grid 1 in Fig. 3 is a five-block grid with 101� 201 grid points in each
block. It has 4� 101 grid points on the cylinder circumference and 201 points in the radial direction. Grid 1 is
smaller and will only be used in Case 1 below. It is included to quantify the effect from the far-field boundaries.
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Fig. 3. Block structure and sizes of computational grids.
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Grid 2 is the five-block grid in Fig. 3. It has a larger domain but the same number of points in each block and
in the circumferential and radial direction. The smallest cell size close to the cylinder is the same meaning that
the stretching in the radial direction is slightly larger to account for the increased domain size. (Grid 2, or sub-
sets of it, is used in Cases 2–7 where we use the notation circumferential� radial to indicate the number of
points in each direction around the cylinder.) We compute seven different cases.

1. Grid 1 and a 3rd-order schemes. Results are shown in Table 3.
2. Every 4th point of Grid 2 (101� 51) and the 3rd-order scheme. The results are shown in Table 4. In Fig. 4 a

vector plot of the velocity near a small portion of the cylinder surface is shown.
3. Every 2nd point of Grid 2 (201� 101) and the 3rd-order scheme. The results are shown in Table 5.
4. Every point of Grid 2 (401� 201) and the 3rd-order scheme. The results are shown in Table 6.
5. Every 4th point of Grid 2 (101� 51) and the 5th-order scheme. The results are shown in Table 7. In Fig. 4,

a vector plot of the velocity near a small part of the cylinder surface.
6. Every 2nd point of Grid 2 (201� 101) and the 5th-order scheme. The results are shown in Table 8.
7. Every point of Grid 2 (401� 201) and the 5th-order scheme. The results are shown in Table 9 and in Fig. 5,

the qu variable of the solution at T ¼ 1500 is shown.

In Table 10 we show reference data from [24,8,6]. It is only Case 2 that deviates a bit from the reference
data and all other agrees well. Case 2 is the least resolved case with the lowest order and naturally the least
accurate of all computations. But note that the 5th-order scheme with the same resolution (Case 5) compares
Table 3
Data for Case 1

Lift Drag pfx pfy visx visy Strouhal

Max 0.3316 1.3701 1.0242 0.2924 0.3460 0.0442 –
Min �0.3317 1.3508 1.0067 �0.2925 0.3440 �0.0442 –
Mean 0.0067 1.3603 1.0153 0.0054 0.3450 0.0013 0.167

pfx, pfy, visx, visy are pressure and shear stress forces in the x- and y-direction acting on the cylinder.

Table 4
Data for Case 2

Lift Drag pfx pfy visx visy Strouhal

Max 0.3433 1.3016 1.0492 0.3225 0.2527 0.0304 –
Min �0.3435 1.2807 1.0289 �0.3226 0.2515 �0.0304 –
Mean 0.0077 1.2911 1.0390 0.0066 0.2521 0.0010 0.0154

pfx, pfy, visx, visy are pressure and shear stress forces in the x- and y-direction acting on the cylinder.
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Fig. 4. Plots of solutions of Case 2 and Case 5 at T ¼ 1500. Velocity vectors close to the upper wall of the cylinder including reference
vectors of length 0.01.



Table 5
Data for Case 3

Lift Drag pfx pfy visx visy Strouhal

Max 0.3294 1.3404 1.0172 0.2946 0.3235 0.0407 –
Min �0.3296 1.3214 0.9996 �0.2947 0.3217 �0.0407 –
Mean 0.0046 1.3308 1.0083 0.0045 0.3225 1.1307e�04 0.164

pfx, pfy, visx, visy are pressure and shear stress forces in the x- and y-direction acting on the cylinder.

Table 6
Data for Case 4

Lift Drag pfx pfy visx visy Strouhal

Max 0.3264 1.3477 0.9917 0.2882 0.3373 �0.0432 –
Min �0.3265 1.3291 1.0086 �0.2883 0.3393 �0.0432 –
Mean 0.0085 1.3385 1.0002 0.0077 0.3383 8.6e�04 0.165

pfx, pfy, visx, visy are pressure and shear stress forces in the x- and y-direction acting on the cylinder.

Table 7
Data for Case 5

Lift Drag pfx pfy visx visy Strouhal

Max 0.3508 1.3838 1.0345 0.3068 0.3495 0.0499 –
Min �0.3511 1.3588 1.0120 �0.3071 0.3466 �0.0500 –
Mean �0.0034 1.3714 1.0234 �0.0027 0.3480 �7.1019e�04 0.162

pfx, pfy, visx, visy are pressure and shear stress forces in the x- and y-direction acting on the cylinder.

Table 8
Data for Case 6

Lift Drag pfx pfy visx visy Strouhal

Max 0.3252 1.3476 1.0047 0.2858 0.3430 0.0443 –
Min �0.3254 1.3301 0.9889 �0.2859 0.3411 �0.0443 –
Mean 0.0089 1.3389 0.9968 0.0079 0.3421 9.9330e�04 0.165

pfx, pfy, visx, visy are pressure and shear stress forces in the x- and y-direction acting on the cylinder.

Table 9
Data for Case 7

Lift Drag pfx pfy visx visy Strouhal

Max 0.3268 1.3499 1.0077 0.2878 0.3423 0.0439 –
Min �0.3268 1.3314 0.9910 �0.2878 0.3403 0.0439 –
Mean 0.0087 1.3406 0.9993 0.0078 0.3413 9.2e�4 0.165

pfx, pfy, visx, visy are pressure and shear stress forces in the x- and y-direction acting on the cylinder.
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well with the references. Moreover, we include Case 1 to show the effect the far-field boundary has on the solu-
tion. The difference from Case 4 (same order of accuracy and resolution) is not big, which shows that the far-
field boundary conditions derived in [19] are good and reasonably transparent.

In Fig. 4, a vector plot of the velocity near a small part of the cylinder surface is shown. Even at this coarse
resolution the penalty terms at the boundary forces the velocities to be close to 0. Note also that the direction
of the vectors is along the boundary showing that these underresolved boundary conditions tend to act like
Euler wall boundary conditions. The extent to which the velocity slips at boundary is proportional to the over-
all resolution of the calculation. This supports our claim that the slip velocity can be used as a measure of the



Table 10
Reference data for circular cylinder at Ma ¼ 0:1 and Re ¼ 100

Average Pressure drag Viscous drag Drag Strouhal

Kwon and Choi 1.0 0.34 1.34 0.165

Max drag Max lift

Kravchenko et al. 1.286–1.405 0.301–0.3501 0.162–0.167
Williamson – – – 0.161

Fig. 5. Plot of qu in Case 7 at T ¼ 1500.
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overall accuracy. Another observation is that, given such underresolved calculations as in Case 4 and Case 2 it
is likely that the overall accuracy would be degraded if the no-slip condition was to be enforced exactly, as the
rest of the grid does not have a resolution to support that. That leads to the interpretation that the resulting
slip velocity can be viewed as part of a boundary layer surrounding a body of slightly different shape. Any
body with a shape differing from the cylinder less than the local grid size can be said to be approximated
by that particular grid. Hence, we claim that there is no danger in allowing a slip velocity so long as it relates
precisely to the resolution. In this case it does.

3.4. Efficiency

We have shown that higher order of accuracy yields smaller errors on a given grid, but the time to compute
a solution of a given error is the real measure of efficiency.

To estimate the efficiency, we note that the data of Case 4 are very similar to Case 6. Hence, we should
compare run time for the 3rd-order scheme on the fine grid with the 5th-order scheme on the medium grid.
The result is shown in Table 11. We run until T ¼ 1:0 and measure the time and note that the 5th-order scheme
is about three times faster than the 3rd-order. Since we can not know for sure that the two cases have com-
parable accuracy, an even more unfavorable case for the 5th-order scheme would be to assume that a 2nd-
order scheme would perform as well on the fine grid as the 5th-order on the medium grid. We include that
test in Table 11 and conclude that even here the 5th-order scheme outperforms the 2nd-order by a factor
Table 11
Run time for three different cases (T final ¼ 1:0)

Order Time (s)

2 (fine) 58
3 (fine) 90
5 (medium) 27
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of two. (We emphasize that we run at the maximum possible CFL in each case.) In 3-D the difference would be
even larger in advantage of the 5th-order scheme.

4. Conclusions

We have shown that the no-slip boundary condition together with a boundary condition on the tempera-
ture imply well-posedness. The main result of this article is the derivation of a stable numerical procedure for
the wall boundary conditions, using SBP-SAT finite difference schemes. A number of different numerical com-
putations for a cylinder in free-stream at Ma ¼ 0:1 and Re ¼ 100, have been performed that highlight the
robustness and accuracy of the penalty imposition of the wall boundary conditions.

The robustness of this technique was demonstrated with the initial behavior of a computation with a free-
stream initial data that were incompatible with the boundary data. The computation was perfectly stable and
the solution quickly and smoothly adjusted to satisfy the no-slip conditions. We used the deviation from 0 for
the discrete solution of u and v at the wall, to show that the errors on the wall are small and that the approx-
imately correct convergence rates were obtained.

Long time calculations and measurement of forces on the cylinder showed good agreement with established
results in the literature. Also, increased formal order of accuracy resulted in better results in full agreement
with the previous study of the deviation of the no-slip condition at the wall. This observation led us to state
(without a proof) that the SAT technique to impose the boundary conditions also supplies us with a tool to
measure the accuracy for any discrete solution. That is, the accuracy to which the boundary conditions are
satisfied reflects the overall accuracy of the discrete solution.

Finally, a comparison of the 2nd-, 3rd- and 5th-order scheme showed the superior computational efficiency
of high-order methods in terms of wall-clock time.

Appendix A. Flow chart for implementation

Below we will summarize the scheme and present a flow chart for the implementation of the wall boundary
conditions. For convenience of the reader we repeat (13)
ðJuÞt þDnðbFI � �bFVÞ þDgðbGI � �bGVÞ þDfð bHI � � bHVÞ ¼ 0
and the penalty term (19) expressed in the conservative variables.
penalty ¼ rI1ðP�1
n E0n

bA01ðu� gI1ÞÞ þ �rI2ðP�1
n E0n

bIðu� gI2ÞÞ:
In a computer code all these relations have to be evaluated at each grid point. We stress that by not using bold
face characters below. We will integrate in time using a Runge–Kutta scheme and we pose the scheme as
ut ¼ rhs where
rhs ¼ 1

J
ð�DnðbF I � �bF VÞ � DgðbGI � �bGVÞ � Dfð bH I � � bH VÞ þ rI1ðP�1

n E0n
bA01wðu� gI1ÞÞ

þ �rI2ðP�1
n E0n

bI ðw� gI2
w ÞÞÞ: ð38Þ
The penalty term enforces a wall boundary condition at n ¼ 0 (and will only be non-zero if rhs is evaluated at
a boundary point). At any point on the n ¼ 0 boundary we have bA1 ¼ X TKX where bA1 is the Jacobian of bF I at
that point. K ¼ diagðun; un; un; un þ a; un � aÞ. The transformation matrix X can be found in [17]. (Note that
the transformation takes the conservative variables directly to the characteristic variables.) The other five sides
in the 3D computational box will have the corresponding penalty terms.

In each grid block, the solution is stored in a multi-index variable u. At each of the six sides we need three
variables uB, gI1; gI2, i ¼ 1; . . . ; 6 of the size of the corresponding side (that is a plane in 3D and a line in 2D).
We initialize by giving u values and copy the boundary values of u into uB at each side. We construct and store
the boundary values to be used for the inviscid penalty term in gI1, and in case of a wall the no-slip values and
temperature value is put in gI2. To construct the data we use the boundary values uB extract the variables that
are not to be given a value and use them along with the given boundary data to construct gI1;I2.
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Example 1. Assume a wall at n ¼ 0. Then u ¼ v ¼ w ¼ 0, T ¼ T wall and uB is the solution at n ¼ 0. Using uB

we can compute the local value of q. Then we construct (on conservative form) gI2 ¼ ðq; 0; 0; 0; qT wall

cðc�1Þ Þ
T at each

point on the side.

The values on the penalty parameters, rI1 and rI2 are given by Lemma 2.2 and Theorem 2.3.
Next, we present the flow in the code. Loop over time and Runge–Kutta stages and compute the following

at each stage:

1. Form inviscid and viscous fluxes.
2. Compute difference approximations of all the fluxes.
3. Loop *: Loop over all sides, i. If the side, i, is a wall, loop over all points at that side.

(a) Compute Roe-average between uB and gI1. (Denote the result uroe.)
(b) Compute X ðuroeÞ and K0ðuroeÞ, which is the diagonal matrix with non-zero entries corresponding to the

ingoing characteristics.
(c) Compute A0 ¼ X TK0X .
(d) Compute penaltyi ¼ rI1A0ðuB � gI1Þ þ rI2IðuB � gI2Þ.
(e) Scale penalty: penaltyi :¼ ðP�1

Y =JÞ � penaltyi. (Y ¼ n; g; f depending on the direction of the normal on
the side.)

4. Add penaltyi to rhs at the points corresponding to side i.
5. End loop *.
6. Use rhs in the Runge–Kutta stage.
Remark. The same routine can be used for all boundaries. X and K0 will depend on the normal direction and
will automatically be correct whichever boundary we consider. Care is only needed in the choice of ingoing
characteristics and the sign of the final penalty term.

Remark. It is straightforward to include the treatment of far-field boundaries and grid–block interfaces in the
above procedure. We need to add an extra penalty term for the viscous flux and add an additional data var-
iable, gV, to be used in that penalty term.

If the side is a far-field boundary rI2 ¼ 0. We also include the possibility of time dependent data, i.e. gI1 is
updated at each stage.

If the side is an interface we would need to communicate uB and the viscous fluxes in the above procedure.
We would use the above penalty terms and the extra penalty on the viscous flux. gI1 ¼ gI2 ¼ uB2 and gV ¼ F B2,
where uB2 and F V 2 is the data obtained from the connecting block. The penalty parameter rI2 would be slightly
different and depend on the P matrices on both sides of the interface, but would still be 	 1=h as in the present
article. (A thorough derivation is the subject of a future article.)
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